Inpopmaruka, 00uyKCIIOBAJIbHA TEXHiKa Ta aBTOMAaTH3aLisl

VIIK 004.432.4

Baklan LV,

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Vasilenko V.G.

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Shyrii V.V,

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

SYSTEM ANALYSIS OF ABSTRACT DATA TYPES
IN PROBABILISTIC PROGRAMMING LANGUAGES

Today, there are quite a few different probabilistic programming languages that to some extent use
the concepts of probability theory for their calculations. But we wanted to know what data types exist
for solving probabilistic tasks. In the present paper we present a system analysis of abstract data types
in selected languages of probabilistic programming. We revealed several moments. The first is that all
the languages we choose use the data types of their ,, parent” programming languages. The second is
that for the use of distributions and random variables, the built-in functions or methods in each of the
languages are used. And writing your own can cause some difficulties. We tried to depict the main areas
of use of modern probabilistic abstract data types in probabilistic programming languages.

Key words: Probabilistic programming, Abstract data types, Probabilistic programming lan-

guages, Programming languages.

Introduction. Today there are widespread appli-
cations of the probability models used for creation of
the modern artificial intelligence in application-ori-
ented statistics or in cognitive science. This results
from the fact that they are connected to operation over
probabilities and their probable outputs. However,
probabilistic models tend to increase their complex-
ity. Therefore, it is necessary to create new tools to
provide a new integrated approach to the probabilis-
tic representation of models. Therefore it is necessary
to create new tools for support of a new integrated
approach to probable representation of models. And
probable a programming language it is provided.
Languages allow you to create tools for describing
complex probability distributions and implement an
effective probabilistic output for an arbitrary com-
puter program.

Probabilistic programming languages, in their
simple form, extend the well-known deterministic
programming language with primitive constructions
for random choice [17]. However, over time, there
was a creation of new tools for probabilistic inference
and the emergence of new complex probabilistic sim-
ulation programs. The presence of a large number of
probabilistic programming languages led to the idea

that there is a certain programming paradigm, the
so-called probabilistic programming.

Analysis of recent research and publications.
Basic principles language design and probabilistic
programming were given in [8]. Also in this article
describes the differences between Probabilistic Pro-
gramming and Probabilistic Model Checking.

About each of probabilistic programming lan-
guages there are relevant article or the corresponding
page on the Internet from their authors. Therefore we
will list those languages about which we will speak.
Namely: Church (MIT BCS/CSAIL) [5; 13], Angli-
can (MIT, Oxford University and DARPA PPAML)
[2-4; 15], Venture (MIT BCS/CSAIL) [9; 11; 18],
Infer.Net (Microsoft Research) [12], TensorFlow
[6; 13] (Google) with libraries TensorFlow Distribu-
tions (Google, Columbia University) [1] and Edward
(Columbia University) [7; 8; 16].

The objectives of the research. In each of the
languages of probabilistic programming with the
help of abstract types, the basic concepts of probabil-
ity theory are realized: probability space set, random
variable, probability, probability distribution. These
concepts, in our opinion, must necessarily be imple-
mented in languages of probabilistic programming.

75



Bueni sanucku THY imeni B.1. Bepnancbkoro. Cepid: Texniuni Hayku

In this article, we will analyze the implementa-
tion of the basic concepts of probability theory with
abstract data types in probabilistic programming lan-
guages. Namely: Church, Anglican, Venture, Infer.
Net, TensorFlow with libraries TensorFlow Distribu-
tions and Edward.

Church (MIT BCS/CSAIL). Let's start our
analysis with the Church. Church — a universal lan-
guage for describing stochastic generative processes.
Church is based on the Lisp model of lambda calcu-
lus, containing a pure Lisp as its deterministic subset.

We will provide the partial description of lan-
guage with [5]: “Church language is based upon a
pure subset of functional language Scheme, a Lisp
dialect”. What we can understand from the reading:
Church uses the same abstract types as Scheme. Fea-
ture of Church is the fact that expressions are values
and these expressions describe generative processes.

In Church there is one interesting feature — all compu-
tation returns to Church in the form of random variable
[12]. Or it s possible to tell and so: Church values include
Church expressions, and procedures; if v,...v, are Church
values the list (v,...v,) is a Church value. For example, in
a situation where one random variable is given, probabil-
ity distribution is often called a random variable.

To specify sets, you can use built-in commands,
such as list, vector and map. Using the built-in

Scheme types to represent probabilities, Church uses
the type number. And it can be like integer or, if it is
necessary to calculate probability, rational.

For calculation of probability a distribution func-
tion is used. It returns value from evaluating the body
given env and values of formal parameters.

Anglican (MIT, Oxford University and DARPA
PPAML). Because Anglican is like the Clojure pro-
gramming language, it uses the same data types. Here
are just Clojure data types are Java data types, which
also means that all values in Clojure are regular Java
reference objects.

For representation of sets, Anglican, as well as
Church, uses the list, vector or hashmap types. Sam-
ple method returns a random sample and roughly cor-
responds to the default implementation of the sample
checkpoint.

For storage and work with probability, Anglican
uses library java.lang.BigDecimal — decimal values
or other classes, because Java primitives are usually
boxed in Clojure functions. The observe method
returns the log probability of the value, which roughly
corresponds to the default implementation of the
observe checkpoint.

To determine the distribution used macro defdist.
It takes care of defining a separate type for every dis-
tribution so that Clojure multimethods (or overloaded

Unnamed state (soq. or conc)
More declaratoe == 4

Fig. 1. Classification of programming paradigms [17]

76 Tom29 (68) 4. 1N2 12018



Inpopmaruka, 00uyKCIIOBAJIbHA TEXHiKa Ta aBTOMAaTH3aLisl

methods) can be dispatched on distribution types
when needed.

In addition to distributions, Anglican provides ran-
dom processes, which define sequences of random
variables that are not independent and identically dis-
tributed. Random processes are defined using the def-
proc macro and implement the anglican.runtime/ran-
dom-process protocol. This protocol has two methods:

— produce, which returns the distribution on the
next random variable in the sequence;

— absorb, which incorporates the value for the next
random variable and returns an updated random pro-
cess.

Venture (MIT BCS/CSAIL). Venture is essen-
tially a Lisp-like higher-order language augmented
with two novel abstractions:

— Probabilistic execution traces (PETs or abbrevi-
ated as “traces”) are a first-class object that represents
the sequence of random choices that a probabilistic
program makes. Each program subcomputation that
yields a result corresponds to a random variable.PETs
serve as the only native form of mutable storage in
Venture, and map dynamic “addresses” assigned over
the course of program execution to the manifest val-
ues taken by the program at those addresses;

— Stochastic procedures (SPs). SPs are used to
encapsulate simple probability distributions, as well
as user-space VentureScript programs and foreign
probabilistic objects. An SP consists of a linked col-
lection of programs and meta-programs that collec-
tively describe aspects of a probabilistic program that
are important for its use in modeling and inference.
SPs are designed to allow simple probability distri-
butions, user-space VentureScript, and foreign prob-
abilistic programs to be treated uniformly as building
blocks of complex probabilistic computations ;

The authors state that Venture uses the usual scalar
and symbolic data types from the programming lan-
guage Scheme. Also in Venture there is support for
collections and additional datatypes corresponding to
a primitive object from the probability theory and sta-
tistics. There is support for the stochastic procedure
datatype for using compound procedures returned by
lambda.

Here is a list of the most important values:

— Atoms — discrete items with no internal structure
or ordering;

— Numbers — data types like as integer, rational,
real, and complex;

— Collections — vectors, which map numbers to
values and support O(1) random access, and maps
(map values to values) with support O(1) amortized
random access;

— Stochastics procedures — standard library com-
ponents and can also be created by Lambda and oth-
ers stochastic procedures.

Infer.NET (Microsoft Research). InferNET
framework for running Bayesian inference in graph-
ical models. Infer. NET provides the state-of-the-art
message-passing algorithms and statistical routines
needed to perform inference for a wide variety of
applications.

In Infer.NET it is possible to create three types of
variables: random (values are unknown and whose
posterior distributions can be calculated during infer-
ence), constant (fixed values), observed (values not
specified when the model is constructed, but are given
before performing inference).

Infer.NET is used to create variables other than
simple data types, such as bool, double, int, enum,
string, char. Vector and PositiveDefiniteMatrix are
used as vector and matrix types for creation of prob-
abilistic sets. In addition, all of them and also TDo-
main [], [SparseList <>, IList <> can be used for
discrete, continuous, multivariate and sequence dis-
tributions.

For greater convenience and possible simplicity,
the developers provided methods for creating ran-
dom variables with various distribution factors. It can
pass in random variables as arguments e.g. Variable
<bool> instead of int. In [11] you can see examples of
such usage, as well as with the description and syntax
on Infer.NET. Built-in functionality allows you to use
different types of data parameters. For example, with
discrete distribution.

TensorFlow (Google), library TensorFlow Dis-
tributions (Google, Columbia University) and
Edward (Columbia University). TensorFlow is
based on use of so-called tensors. We will give small
definition about tensors. Tensors are simply mathe-
matical objects that can be used to describe physical
properties, just like scalars and vectors. In fact tensors
are merely a generalization of scalars and vectors; a
scalar is a zero rank tensor, and a vector is a first rank
tensor [18].

The rank (or order) of a tensor is defined by the
number of directions (and hence the dimensionality
of the array) required to describe it. For example,
properties that require one direction (first rank) can be
fully described by a 3x1 column vector, and proper-
ties that require two directions (second rank tensors),
can be described by 9 numbers, as a 3%3 matrix. As
such, in general an nth rank tensor can be described
by 3n coefficients.

Tensors are used to represent the data structure
in programs written in TensorFlow. Using tensors,

77



Bueni sanucku THY imeni B.1. Bepnancbkoro. Cepid: Texniuni Hayku

TensorFlow represents the probability space is an
N-dimensional array or list. The tensor has a static

type and a dynamic dimension.

TensorFlow provides several possibilities for cre-
ating so-called random tensors with different distri-
butions. In this case, after each call and calculation,

new random values are created.

Tensors can be of such data types: bool, half, float,
float64, uint8, int8, int16, int32, int64, complex64, com-
plex128, string. But you can also use standard data types

with Python. For example, as bool, str, list or tuple.

More recently, for TensorFlow, another library of
adaptation of the vision of probability theory to the mod-
ern deep-learning paradigm of end-to-end differentiable
computation. It is called TensorFlow Distributions [1]. It
is constructed on such two abstractions: Distributions and
Bijectors. The first provides a collection of approximately
60 distributions with fast, numerically stable methods for
sampling, log density, and many statistics. The second
one allows composable volumetracking transformations
with automatic caching. Together these enable modular
construction of high dimensional distributions and trans-

formations not possible with previous libraries.

Also, this year was presented Edward [15] — deep
probabilistic programming library, which expands
deep-learning research by enabling new forms of experi-
mentation, faster iteration cycles, and improved reproduc-
ibility. Edward provides a language of random variables
to construct a broad class of models: directed graphical
models, stochastic neural networks, and programs with
stochastic control flow. In Edward, random variable is an
object parameterized by tensors. For Edward, the Tensor-

Flow Distributions library has a backend.

"Classical"
programming
data types

" Probability
Theory

Fig 2. The fields of use of the modern abstract data
types in probabilistic programming languages

78 Tom29 (68) 4. 1N2 12018

Discussion and Conclusion. We will write short
outputs about each of the probable languages selected
by us. The Church language is quite simple in under-
standing because any computation by means of embed-
ded functions allows to receive random variable. And
language uses abstract data types from functional lan-
guage Scheme.

Anglican uses data types from the language of Clo-
jure, which in turn, takes them with Java. And as it seems
to us, it is a direct continuation of the ideas that were laid
in the Church, but with the use of modern frameworks.

Venture is another representative of Lisp's-like lan-
guage. But adds two novel abstractions: probabilistic
execution traces and stochastic procedures. The first are
necessary for sequence of random choices, whereas the
second — to allow simple probability distributions. The
data types of the Scheme language are used.

By means of Infer.NET it is possible to create various
variables, including random. At the same time using dis-
crete, continuous, multivariate or sequence distributions.
Also Infer.NET can be used in other .NET languages, for
example, in C++/CLI, F#, IronPython and others.

Tensors are the main mathematical objects for the
TensorFlow language. They allow to create multidi-
mensional structures of random variables with different
distributions given for calculation. For a task of sets are
used as the types which are built in language, that and
with Python. This year two libraries which I expand
functionality of language have been presented. In Ten-
sorFlow Distributions, two abstractions are added,
which together enable modular construction of high
dimensional distributions and transformations. The sec-
ond library — Edward — allows develop difficult proba-
bilistic models and their algorithms.

We will select several highlights. The first is that all the
languages we choose use the data types of their “parent”
programming languages. The second is that for the use of
distributions and random variables, the built-in functions
or methods in each of the languages are used. And the list
of these distributions can be different. Depending on var-
ious factors (development experience, knowledge in the
field of probability theory, etc.), the development of own
probabilistic concepts can cause confusion.

In Fig. 2, we tried to depict the main areas of use
of modern probabilistic abstract data types in prob-
abilistic programming languages. Modern probabil-
istic programming languages are used as data types
of “parent” languages, and new ones are introduced
to describe and interact with probability theory. In
future works, we will try to move away from the
abstract data types of the main programming para-
digms (imperative, declarative), thereby suggesting
the use of probabilistic types.



Inpopmaruka, 00uyKCIIOBAJIbHA TEXHiKa Ta aBTOMAaTH3aLisl

References:

1. Alemi A., Dillon J.V., Langmore 1. Tensorflow Distributions. 2017.

2. Anglican Homepage. URL: https://probprog.github.io/anglican/index.html (nara 3Bepuenns 28.11.2017).

3. Anglican Language syntax, URL: https://probprog.github.io/anglican/ index.html (nara 3Bepuenns 28.11.2017).

4. Anglican Inference methods, URL: https://probprog.github.io/anglican/ inference/index.html (nara 3BepHeHHs
28.11.2017).

5. Computation in Church, URL: http://projects.csail.mit.edu/church/wiki/ Computation_in_Church (mara 38ep-
Henns 25.11.2017).

6. Constants, Sequences, and Random Values page, URL: https:/www.tensorflow.org/api_guides/python/
constant_op (gara 3sepHeHHs 28.11.2017).

7. Edward Homepage, URL: http://edwardlib.org/ (nara 3Bepuenns 27.11.2017).

8. Developing Custom Random Variables URL: http://edwardlib.org/api/model-development (nara 3BepHEHHS
27.11.2017).

9. Gordon A.D., Henzinger T.A., Nori A.V., Rajamani S.K. (2014, May). Probabilistic programming. Proceedings
of the on Future of Software Engineering. 2014. P. 167—181.

10. Lu A. Venture: an extensible platform for probabilistic meta-programming: auc. ... KaHA. TEXH. HayK.

11. Mansinghka V., Selsam D., Perov Y. Venture: a higher-order probabilistic programming platform with
programmable inference.

12. Infer.NET 2.6. URL: http://research.microsoft.com/infernet (1ara 3Bepuennst 14.11.2017).

13. Probability Theory and The Meaning of Probabilistic Programs. URL: http://projects.csail.mit.edu/church/
wiki/Probability Theory and The Meaning of Probabilistic Programs (nara 3sepuenns 14.11.2017).

14. TensorFlow Homepage. URL: https://www.tensorflow.org/ (nata 3sepuenns 27.11.2017).

15. Tolpin D., van de Meent J.W., Yang H. Design and Implementation of Probabilistic Programming Language
Anglican. 2014.

16. Tran, D., Kucukelbir, A., Dieng, A. B., Rudolph, M., Liang, D. & Blei, D. M.: Edward: A library for
probabilistic modeling, inference, and criticism.

17. Vasilenko V., Shyrii V., Baklan 1. Modern programming paradigm — probabilistic programming. In XIIV
International scientific conference “Intellectual systems of decision-making and problems of computational
intelligence”. 2017.

18. Venture Homepage. URL: http://probcomp.org/venture/ (nara 3sepuennst 14.11. 2017).

19. What is a Tensor. URL: https://www.doitpoms.ac.uk/tlplib/tensors/ what is tensor.php (mara 3BepHEHHS
26.09.2017).

CUCTEMHUM AHAJII3 ABCTPAKTHUX THUIIIB JJAHUX
Y UMOBIPHICHAX MOBAX ITPOT'PAMYBAHHS

Cb0200Hi icHye be31iy PI3HUX IMOBIPHICHUX MO8 NPOSPAMYBAHHSL, SIKI NEGHOIO MIPOIO BUKOPUCOBYIOMb NOHAMMNISL
meopii imosiprocmetl 07 pO3PAXYHKIB. Ane mu xominu 6 3namu, sKi muniu OaHUX icHyiomb 07l BUPILULEHHS. IMOBID-
HICHUX 3a60aHb. Y pobOMI MU NOOAEMO CUCTIEMHULL AHANE3 AOCIMPAKMHUX MUNIE OaHUX BUOPAHUMU MOBAMU LIMOBID-
HiCHO20 npoecpamyearHs. Mu euasunu Kinbka momenmis. Ilepuiuti Momenm nonseae 6 momy, wjo 6ci 8UOPaHi Hamu
MO8, BUKOPUCTOBYIOMb MURU OGHUX CB0IX «DAMBKIBCHKUX» MO8 NPOSPAMYBaHHs. [[pyeull noiseae 8 momy, wo Oisl

BUKOPUCTNAHHSL OUCTPUOYMUGIG | BUNAOKOBUX BETUMUH BUKOPUCTIOBYIOMbCSL B0YO0BAHI (OYHKYIT aO0 Memoou KOMHCHOT

3 M08. I Hanucannst 61acHo20 Modice npuzsecmu 00 0esiKux mpyoHowie. Mu cnpobyeanu 300pazumu ocHoeHi cghepu
BUKOPUCMAHHSL CYYACHUX IMOGIPHICHUX AOCMPAKIMHUX MUNIE OAHUX Y UMOGIDHICHUX MOBAX NPOSPAMYBAHHSL.

Knrouosi cnoea: iimosipnicue npospamy8antis, abCmpakxmHi munu OaHux, tMOGIPHICHI MOBU NPOSpamy-
BAHHS, MOBU NPOCPAMYBAHHSL.

CUCTEMHBIN AHAJIN3 ABCTPAKTHBIX TUTIOB TAHHBIX
B BEPOSITHOCTHBIX SI3BIKAX TPOTPAMMUPOBAHUS

Cezo0ns1 cyujecmeyem MHOICECTNBO PAIUYHBIX 6EPOSIMHOCHHBIX A3bIKOG NPOSPAMMUPOBAHUS, KOMOPble
6 ONpedeneHHoOl CIMeneHy UCNOIb3YIOM NOHAMUSL meopuu eepossmuocmeti 0as paciemos. Ho mwl xomenu
Obl 3HAmMb, KaKue Mmunvl OAHHLIX CYULecmeyiom O0s peulenis 8eposimHOCMHbIX 3a0ad. B pabome mvl npeo-
cmaensieM CUCMEeMHbLIL AHAU3 aOCMPAKMHbLIX MUN08 OAHHbIX HA GbLOPAHHBIX SI3bIKAX 6EPOSIMHOCIIHO20 NPO-
epammuposanus. Muvl obnapysicunu Heckonbko momenmos. Ilepavlil MoMeHm 3aKaouaemcs 6 mom, Ymo ce
BbIOpANHbIe HAMU SA3bIKU UCHOAL3YIOM MUNbl OAHHBIX CEOUX «POOUMETLCKUXY SA3bIKOE NPOSPAMMUPOBAHIUSL.
Bmopoti 3axmiouaemcs 6 mom, umo 051 UCNOABL30BAHUSL OUCIIPUOYINUBOE U CLYHAUHBIX BETUUUH UCHOTb3YIOCS
BCTPOEHHBLE (PYHKYUL UTU MEMOObL KAXNCO020 U3 A3b1K08. M Hanucanue c8oUX MOICEmM Gbl36aMb HEKOMOPbLE
mpyonocmu. Muvl nonvimanuch u300pazums 0CHogHble Chepbl UCTONBLI0BAHUSL COBPEMEHHBIX GEPOSMHOCHIHBIX
AbCMpPaKkmHulX Munog OaHHbIX 8 BEPOSIMHOCTIHBIX A3bIKAX NPOSPAMMUPOBAHUSL.

Knrwouesnie cnosa: seposimnocmmuoe npozpammuposanie, abCmpaxmmuvle munvl OAHHbIX, 6ePOIMHOCHIHbIE
AZBIKU NPOSPAMMUPOBAHUSL, AZBIKU NPOZPAMMUPOBAHUSL.

/9



